Vintage Plaster Traditions – Viticulture

By Patrick Webb ,

Nature. Culture. Perhaps these seemingly disparate aesthetics were no better reconciled than by the French Renaissance tradition of the formal garden.

“In the Renaissance taste the garden was an extension of the main design. It was a middle term between architecture and Nature. The transition from house to landscape was logically effected by combining at this point formality of design with naturalness of material.” – Geoffrey Scott, The Architecture of Humanism

Previously, we have considered Varietals and Terroir…learning about grapes and minerals…exploring soils, weather and geology…recognizing all of nature’s generous contributions. All that we have hitherto discussed is most fundamental; however, wine and plaster are uniquely products of culture. The balance of our five-part series will consider the human touch.

Viticulture in Wine

Although located in what is considered the “old world” of wine production, Bordeaux is squarely in the forefront with regard to wine-making technology. So in this segment we are going to discuss an aspect of the Bordeaux wine industry that receives nowhere near the attention it deserves. We are talking about viticulture. Viti is latin for vine therefore viticulture roughly translates to vine cultivation. In this article, we will examine two methods of viticulture that are essential to making a great wine; vine manipulation and pest control.

Vine leaves contain chlorophyll cells that absorb sunlight enabling the plant to extract carbon dioxide from the air and convert it to sugar. The nutrients imparted by the sugar feeds the vine roots, grape clusters and leaves ensuring the entire plant receives exactly what it needs, when it is needed.

Allowing too much foliage shields the grapes from the sunlight they need for the last stage of their healthy development, so pruning is crucial to producing a quality wine. However caution must be exercised with cutting, because every cut is an entry point for pests to enter and attack the vine. On the other hand, if too many leaves are pruned, the plant does not have the means to absorb sufficient sunlight to sustain the entire vine.

Wine grapes emerge at the end of the growing season so the plant’s nutrients must further be shared with the new grape clusters. If there are too many clusters, the sugar and acid levels will likely be undeveloped and/or unbalanced resulting in a poor showing as a wine. Too few clusters negatively affects potential profits from wine sales.

Pest control is another very important aspect of viticulture. In the 1870s a small, deadly phylloxera louse made its way to Europe and all but wiped out all wine production. Phylloxera destroys the grapes, rots the vines and often leaves its larvae in the root, eventually killing the vine completely. Although Bordeaux and Europe at large have regained their wine producing capabilities, phylloxera and other lice, along with viruses, bacteria, fungi, mites and insects are still among the many threats to healthy vines.

In an effort to eliminate ongoing threats to their vineyards and livelihoods, many late 20-century wine growers often used chemical fertilizers and pesticides indiscriminately. Thankfully much has changed since then, with most of the region’s winegrowers using more environmentally conscious, natural pest control methods. For example, Bordeaux wine growers are currently and constantly experimenting with root grafting in order to find the genetic combination that is naturally resistant to harmful bacteria and viruses. Scientists and wine growers are also experimenting with sea algae as a natural deterrent to gray rot.

There is no doubt that viticulture is both science and art. Winemakers must have intimate knowledge of their vineyard’s terroir as well as which viticulture methods will work best within its parameters. It is with this intricate knowledge and dedication to quality that winemakers are able to extract the best wines from the best grapes.

Viticulture in Plaster

France is a geologically mineral rich country. Correspondingly rich in culture, the French have been very successful in exercising their influence over a number of raw mineral materials to produce some of the finest plasters in the world. The plaster equivalent to Viticulture is baking. Let’s now take a closer look at how three minerals are prepared for our blended plaster, Terre de Séléné.

Clay is the primary mineral used for plaster in Terre de Séléné. It is an abundant mineral worldwide, the result of millions of years of erosion. In parts of France a relatively pure form is available just under the topsoil, just a few feet below ground. It is easy to excavate and is still traditionally dried by the sun. Later, with minimal effort, it is ground into a powder ready to be used for plaster. While there are a variety of clays in France, clay with a low shrink-swell capacity such as Kaolinite is desirable for Terre de Séléné.

Historically, the French were enamored with this type of clay for additional uses. The word “Kaolin” comes to us directly from French. They in turn inherited the term from China. In the early 18th century the French were obtaining an extremely pure form of clay useful for porcelain, “China,” from a deposit near a mountain the Chinese called Kao “high,” Ling “hill”.

Gypsum is the secondary mineral used in Terre de Séléné plaster. Gypsum is plentiful in France and particularly so in Paris. Gypsum plaster is almost synonymous with the expression “Plaster of Paris”. Paris in fact sits on a “massif” or deposit of mineral gypsum that is among the largest and finest in quality on earth. Naturally occurring gypsum is a type of salt that precipitates through cycles of evaporation from lime or other calcium compounds, typically in lagoons or inland seas.

Preparing gypsum plaster requires a little more effort and energy than clay. It is usually mined from underground deposits. Relatively soft as a stone, it is easily pulverized to a coarse sand ideal for baking. The gypsum plasters useful for Terre de Séléné are baked at relatively low temperatures, from 350° F to 800° F. In general, considerable influence can be exercised in the baking process. Adjustments to the grind, temperature, length of baking and even barometric pressure can produce an amazing range of properties in gypsum plaster such as fast setting plasters good for casting or extremely dense, hard plasters appropriate for floors or countertops.

Limestone is the third mineral used for our plaster blend. In abundance in the South of France, limestone is a sedimentary stone, the result of millions of years of marine skeletons accumulating on ancient sea beds. The lime most useful for Terre de Séléné plaster is very pure, having little contamination from magnesium or silicates. By itself, limestone is very useful as a building material; however, to produce a plaster requires considerable fuel and labor.

Limestone is found underground but is plentiful and easier to extract from surface mines. Much harder than gypsum or clay, extraction is laborious. For baking, limestone is broken into golf ball size pieces. Traditionally, it was baked for 24 hours in vertical kilns at an extremely high temperature of 1500° F. Modern production methods utilizing crushers and horizontal kilns have reduced the time considerably.

The resulting “quick” lime is highly caustic, potentially hazardous to handle. At this point of production, enough water is introduced to cause a partial reaction that reduces reactivity and danger. The slaked lime, also known as dry hydrate, is now ready to be blended with the clay and gypsum plaster to make Terre de Séléné.

As you have read, the French traditions of Viticulture and plaster preparation are very sophisticated. The usefulness of our modern scientific, chemical understanding still lags behind the practical experience gained through centuries of empirical observation and practice. This is especially evident in our subsequent, fourth segment considering the art of the blend, Viniculture. – Contributed by Patrick & Angela Webb

Loading ...
Join the Conversation